Global Optimization with Nonlinear Ordinary Differential Equations

نویسندگان

  • Adam B. Singer
  • Paul I. Barton
چکیده

This paper examines global optimization of an integral objective function subject to nonlinear ordinary differential equations. Theory is developed for deriving a convex relaxation for an integral by utilizing the composition result defined by McCormick (Mathematical Programming 10, 147–175, 1976) in conjunction with a technique for constructing convex and concave relaxations for the solution of a system of nonquasimonotone ordinary differential equations defined by Singer and Barton (SIAM Journal on Scientific Computing, Submitted). A fully automated implementation of the theory is briefly discussed, and several literature case study problems are examined illustrating the utility of the branch-and-bound algorithm based on these relaxations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

APPLICATION NEURAL NETWORK TO SOLVE ORDINARY DIFFERENTIAL EQUATIONS

In this paper, we introduce a hybrid approach based on neural network and optimization teqnique to solve ordinary differential equation. In proposed model we use heyperbolic secont transformation function in hiden layer of neural network part and bfgs teqnique in optimization part. In comparison with existing similar neural networks proposed model provides solutions with high accuracy. Numerica...

متن کامل

Differential transform method for a a nonlinear system of differential equations arising in HIV infection of CD4+T cell

In this paper, differential transform method (DTM) is described and is applied to solve systems of nonlinear ordinary differential equations which is arising in HIV infections of cell. Intervals of validity of the solution will be extended by using Pade approximation. The results also will be compared with those results obtained by Runge-Kutta method. The technique is described and is illustrat...

متن کامل

Global Optimization of Stacking Sequence in a Laminated Cylindrical Shell Using Differential Quadrature Method

Based on 3-D elasticity approach, differential quadrature method (DQM) in axial direction is adopted along with Globalized Nelder–Mead (GNM) algorithm to optimize the stacking sequence of a laminated cylindrical shell. The anisotropic cylindrical shell has finite length with simply supported boundary conditions. The elasticity approach, combining the state space method and DQM is used to obtain...

متن کامل

Solving nonlinear space-time fractional differential equations via ansatz method

In this paper, the fractional partial differential equations are defined by modified Riemann-Liouville fractional derivative. With the help of fractional derivative and fractional complex transform, these equations can be converted into the nonlinear ordinary differential equations. By using solitay wave ansatz method, we find exact analytical solutions of the space-time fractional Zakharov Kuz...

متن کامل

Solving nonlinear Lane-Emden type equations with unsupervised combined artificial neural networks

In this paper we propose a method for solving some well-known classes of Lane-Emden type equations which are nonlinear ordinary differential equations on the semi-innite domain. The proposed approach is based on an Unsupervised Combined Articial Neural Networks (UCANN) method. Firstly, The trial solutions of the differential equations are written in the form of feed-forward neural networks cont...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Global Optimization

دوره 34  شماره 

صفحات  -

تاریخ انتشار 2006